As a powerful solution for heat dissipation in data centers, chip-level cooling continues to capture escalating attention in research and application domains. To accurately analyze system performance, identify potential avenues for system optimization, and inform future practical applications, we developed a steady-state, one-dimensional mathematical model for a novel pump-driven chip-level two-phase cooling system (PCTCS). This model was constructed based on our previous study and was confirmed against existing experimental data. Our simulations scrutinized PCTCS performance under default conditions and investigated the effects of key parameters, such as refrigerant type, condenser vertical positioning, and cooling water temperature. Results showed that the system could manage an 80 W power output from each CPU while maintaining CPU temperatures around 79 °C at a cooling water temperature of 45 °C. We discovered the choice of refrigerant had a significant impact on performance, with R32 outperforming R134a and R113. While the vertical position of the condenser influenced the PCTCS’s internal parameters, its overall impact on system performance was negligible. Moreover, provided the chip temperature remained within a safe range, our study found that increasing the cooling water temperature improved the energy efficiency ratio of the refrigerant pump and reduced the temperature difference between the chips and the cold source.