For years, Japanese knotweed (Reynoutria japonica) has been suspected of accelerating riverbank erosion, despite a lack of convincing evidence. The stems of this invasive plant die back following the first autumn frosts, leaving the soil unprotected during winter and spring floods. In Québec (Canada), riverbank erosion may also be accentuated by ice during mechanical ice breakups. The objective of this study was to evaluate the influence of knotweed on riverbank erosion along a river invaded by the species, within a context of floods with ice. The elevation along 120 cross‐sectional riverbank profiles, occupied or not by knotweed, was measured before and after the spring flood of 2019. On average, riverbanks occupied by knotweed had nearly 3 cm more soil erosion than riverbanks without knotweed, a statistically significant difference. Stem density also influenced erosion: the higher the density, the greater the soil loss. Certain riverside conditions, such as the slope of the riverbank or being located on an islet, interacted with knotweed, further accentuating erosion. Soil losses measured between November 2018 and May–June 2019 were particularly pronounced, but the spring flood was also exceptional, with a recurrence interval close to 50 years. On the other hand, soil loss from rivers invaded by knotweed can be expected to increase over time, as this invasive species spreads rapidly in riparian habitats.