Electrochemical deoxygenation of seawater has advantages over available chemical and physical methods. For seawater deoxygenation, acidic, neutral, or alkaline anolytes can be used. The effects of acidic, alkaline, and neutral buffered and non-buffered anolytes were studied in two compartment deoxygenation cells. The pH, conductivity, H2O2 production, and current were measured throughout the experiments. The optimum applied potentials for oxygen reduction were between 1.9 V–2.2 V, giving water as product; reducing the applied potential also resulted in the formation of H2O2. Analysis after the experiments using a scanning electron microscope with electron-dispersive X-ray spectroscopy showed that both the silver mesh and the cation exchange membrane remained stable during the experiments. The use of alkaline anolytes resulted in the maximum oxygen removal with minimal side reactions in the cell.