Experimental observations show that the gap between the sample and the crucible, commonly obtained after solidification in microgravity, is remarkably stable. With the aim to understand the reason of this stability, the dewetting phenomenon is studied by Lyapunov's method. After a short review of the existing mechanisms leading to dewetting, the open smooth crucible configuration is chosen as the most representative. The analytical stability analysis, taking into account geometrical and thermal effects, performed under some boundary heat transfer approximations, shows that, in most cases, the dewetting process is intrinsically stable.