This paper presents the results of experimental studies on the effects of temperature and time of annealing on the elastoplastic properties of bimetallic aluminium–copper sheets. Mechanical tests were carried out on flat samples previously heated to temperatures of 250, 350, 450, and 500 °C for 40, 90, and 150 min. At the beginning of the tests, the elastic constants and internal friction energy were determined after thermal exposure using the impulse vibration exposure method. Further tests were carried out on the same samples using the three-point bending test. Based on the tests, the following quantities were determined and analysed: elasticity angles, translocations of the neutral axes of the cross-sections of samples, and changes in the values of bending moments plasticizing the extreme layers of bimetallic Al/Cu samples resulting from thermal interactions. The final part of this paper presents the results of measurements of the thickness of diffusion zones at the interface and their effect on the stability of the joint after annealing. The studies that were conducted indicate the dominant influence of the thermal factor on the properties of the Al/Cu bimetal above the temperature of 350 °C, which leads to the weakening of its strength and the degradation of the structure at the metallic phase boundary.