Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Ternary lithium batteries have been widely used in transportation and energy storage due to their high energy density and long cycle life. However, safety issues arising from thermal runaway (TR) need urgent resolution. Current research on thermal runaway in large-capacity ternary lithium batteries is limited, making the study of hazard indicators during the thermal runaway ejection process crucial. This study places a commercial 156 Ah prismatic battery (positive electrode material: Li(Ni0.8Mn0.1Co0.1)O2, negative electrode material: graphite) in a nitrogen-filled sealed container, triggering thermal runaway through lateral heating. The experimental results show that the battery’s maximum surface temperature can reach 851.8–943.7 °C, exceeding the melting point of aluminum. Temperature surge inflection points at the battery’s bottom and near the small side of the negative electrode coincide with the inflection point on the heated surface. The highest jet temperatures at three monitoring points 50 mm, 150 mm, and 250 mm above the safety valve are 356.9 °C, 302.7 °C, and 216.5 °C, respectively. Acoustic signals reveal two ejection events. The average gas production of the battery is 0.089 mol/Ah, and the jet undergoes three stages: ultra-fast ejection (2 s), rapid ejection (32 s), and slow ejection (47 s). Post-thermal runaway remnants indicate that grooves from internal jet impacts are mainly located at ±45° positions. This study provides valuable insights for the safety design of batteries and the suppression of thermal runaway propagation.
Ternary lithium batteries have been widely used in transportation and energy storage due to their high energy density and long cycle life. However, safety issues arising from thermal runaway (TR) need urgent resolution. Current research on thermal runaway in large-capacity ternary lithium batteries is limited, making the study of hazard indicators during the thermal runaway ejection process crucial. This study places a commercial 156 Ah prismatic battery (positive electrode material: Li(Ni0.8Mn0.1Co0.1)O2, negative electrode material: graphite) in a nitrogen-filled sealed container, triggering thermal runaway through lateral heating. The experimental results show that the battery’s maximum surface temperature can reach 851.8–943.7 °C, exceeding the melting point of aluminum. Temperature surge inflection points at the battery’s bottom and near the small side of the negative electrode coincide with the inflection point on the heated surface. The highest jet temperatures at three monitoring points 50 mm, 150 mm, and 250 mm above the safety valve are 356.9 °C, 302.7 °C, and 216.5 °C, respectively. Acoustic signals reveal two ejection events. The average gas production of the battery is 0.089 mol/Ah, and the jet undergoes three stages: ultra-fast ejection (2 s), rapid ejection (32 s), and slow ejection (47 s). Post-thermal runaway remnants indicate that grooves from internal jet impacts are mainly located at ±45° positions. This study provides valuable insights for the safety design of batteries and the suppression of thermal runaway propagation.
Hot surfaces in industrial processes and automotive systems present a remarkable fire hazard. Lubricating oil is a widely used oil in these scenarios. Quantifying the ignition characteristics and flame behavior of lubricating oil on hot surfaces is critical for enhancing fire safety in energy-related applications. This paper utilizes a self-developed experimental platform for the hot surface ignition to systematically conduct combustion tests on lubricating oil with varying volumes at different surface temperatures. Through statistical analysis and image processing, the ignition temperature, flame height, flame propagation velocity, and flame temperature were examined to assess the fire risk of a hot surface ignition. The results demonstrate that the ignition and combustion process of lubricating oil on hot surfaces can be categorized into five stages. The ignition temperature decreases as the oil volume increases. The flame height and flame propagation velocity are positively correlated with the hot surface temperature. The maximum flame height increases with the increase in the oil volumes. When the flame height reaches the maximum value, the flame area is the largest, and the average flame temperature is 1540.30 °C, showing a greater fire risk. When the oil content is 0.2 mL, the flame propagation velocity is the fastest, reaching 3.81 m/s. Meanwhile, the flame is very close to the oil pipe, which may cause a secondary fire. Therefore, hot surface ignition of lubricating oil poses a direct threat to vehicle safety.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.