Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The vibrational fluidized bed is innovatively adopted to regenerate the particulate filter medium for the purification of crude synthesis gas from the coal gasification process. Characteristic research of vibrated fluidized beds during dust-containing particulate filter medium regeneration has been carried out. The ideal transport model of particulate filter medium on the distributor is established and verified by using experiments. The mean residence time of the particulate filter medium can be reduced by 72% from 5.5 to 1.5 min with an increase in the working frequency from 50 to 60 Hz. The thickness of the bed layer is linearly increased with the feeding rate of the particulate filter medium under ideal working conditions. The resistance models of the fluidizing air are built up and validated, and they can be used to calculate the pressure drop of the static bed layer of the particulate filter medium on the fluidizing air distributor, which is the maximum value of the dynamic bed layer with the same thickness. The fluidizing air makes the mean residence time of the particulate filter medium decrease by 50% and reduces the difference in the particulate mean residence time under different feeding-rate conditions. The regeneration effect of dust-containing filter medium particles in a vibrated fluidized bed is evaluated. Fluidizing air with superficial velocity ranging from 0 to 0.6~0.9 m·s–1 makes the regeneration efficiency increase from 29.41% to 70.59~88.24%. This article provides a reference for the industrial application of a vibrated fluidized bed for the particulate filter medium recycling system.
The vibrational fluidized bed is innovatively adopted to regenerate the particulate filter medium for the purification of crude synthesis gas from the coal gasification process. Characteristic research of vibrated fluidized beds during dust-containing particulate filter medium regeneration has been carried out. The ideal transport model of particulate filter medium on the distributor is established and verified by using experiments. The mean residence time of the particulate filter medium can be reduced by 72% from 5.5 to 1.5 min with an increase in the working frequency from 50 to 60 Hz. The thickness of the bed layer is linearly increased with the feeding rate of the particulate filter medium under ideal working conditions. The resistance models of the fluidizing air are built up and validated, and they can be used to calculate the pressure drop of the static bed layer of the particulate filter medium on the fluidizing air distributor, which is the maximum value of the dynamic bed layer with the same thickness. The fluidizing air makes the mean residence time of the particulate filter medium decrease by 50% and reduces the difference in the particulate mean residence time under different feeding-rate conditions. The regeneration effect of dust-containing filter medium particles in a vibrated fluidized bed is evaluated. Fluidizing air with superficial velocity ranging from 0 to 0.6~0.9 m·s–1 makes the regeneration efficiency increase from 29.41% to 70.59~88.24%. This article provides a reference for the industrial application of a vibrated fluidized bed for the particulate filter medium recycling system.
Tea is an important industrial crop. It is the second most popular among all the drinks. The drying operation in the tea industry fulfills the aim of enzyme inactivation and reducing the moisture content to the desired level. The energy consumption in drying operation in the tea industry is mostly in the form of thermal energy. Drying consumes a greater amount of energy than other processes in tea industries. Thermal energy needs are met mainly through fossil fuels. Renewable energy sources such as bioenergy and solar energy are also being adopted but at the minute level. Further, addressing problems such as stewing and case hardening (arises due to improper drying conditions) during drying is necessary to avoid quality loss. In this study, mass transfer modeling of drying of crush tear curl (CTC) tea particles is conducted considering natural convection around the tea particle. A finite difference method with an explicit scheme is used to solve the equations for mass transfer modeling of drying. The effect of drying air temperatures on moisture content, moisture ratio, and drying rates are computed. Drying air temperatures such as 80, 90, and 100°C have not shown effective drying. However, drying at air temperatures of 110, 120, and 130°C are recommended for drying times of 1500 s, 1200 s–1500 s, and 1200 s, respectively. Additionally, the effect of the size of the particles is studied and the lower size of tea particles is recommended for better drying characteristics. The current drying model can be used for single tray/conveyor dryers and indirect natural convection single tray solar dryer.Practical applicationsThe present research work demonstrates the important information for the hot air drying of CTC tea particle in single tray dryer. The drying modeling results can be used to set the proper temperature level of drying air being sent inside the dryer to avoid the under and over‐drying of tea particle and achieve the desired level of moisture content in the tea particle. Thus, the present study helps in deciding drying conditions such as drying temperature, drying duration for CTC tea particle in single tray dryer, slow speed conveyor dryer, and also in indirect natural convection single tray solar dryer.
Study focuses on black tea drying process on fluidized bed dryer in tea factories. Tea drying variables considered in the study were air temperature, air velocity and time. The response variable in the experiment was the black tea moisture content. Air velocity was varied between 0.21 m/s and 0.55 m/s. Whereas air temperature was varied between 70 0C and 130 0C. Drying time ranged between 0 minute and 20 minutes. Black tea drying experiment was conducted in the macerated tea laboratory at Sotik Tea Company using the miniature FBD Sherwood Tornado model 501. It took 20 minutes experimental time to lower the dhool moisture from 72% to 3.5%. Experimental data was used to develop black tea drying curve and drying rate. The Box Behnken design under response surface design methodology in Minitab software was used to analyze and optimize the black tea drying variables. The optimum variables were found to be at hot air temperature of 100 0C, hot air velocity of 0.38 m/s and drying time of 12.9 minutes. These drying parameters resulted in a more acceptable black tea moisture content of 3.5% db which falls between the acceptable black tea moisture content of 3% db to 4% db.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.