A piano key weir (PKW), a new type of weir aiming to increase the discharge capacity of an existing dam, was recently designed. Despite a large body of research in this field, only a few studies were conducted on A-type triangular piano key weirs (TPKW) in straight channels. In this context, this present research sought to study the flow regime, stage–discharge relationship, and discharge coefficient. Experiments were carried out using nine TPKW models and three linear weirs (LW) as the control weirs. The results indicated that the triangular piano key weirs are capable of passing a higher discharge in similar laboratory conditions compared to linear key weirs due to their longer length. For a given h/P ratio (h is the water head over the weir crest, and P is the weir height) and constant length (Le), an increase in the weir height from 0.07 m to 0.15 m decreases the discharge coefficient by approximately 20%. From sensitivity analysis, the most influential parameters for the tested TPKW models are the h/Le dimensionless ratio, followed by the P/Le and Fr. Moreover, the discharge coefficient has a reverse trend when the dimensionless parameters h/P, h/Le, and Froude number are increased. However, with decreasing h/Le, the discharge coefficient of TPKW tends to that of a broad-crested weir because of local submergence. It is expected that the results obtained will be a reference for researchers who work in this field.