Three-dimensional numerical study is performed for heat transfer and resistance characteristics as well as comprehensive performance of two kinds H-type (single and double) finned tube. It is found that the heat transfer and resistance characteristics as well as comprehensive performance of H-type finned tube are influenced by the Reynolds number of gas. With the growth of Reynolds number, the air-side Nusselt number rises gradually and the heat transfer performance gets better and better, whereas the air-side Euler number drops step by step until close to a fixed value. The comprehensive performances of both single H-type finned tube and double ones are weaken progressively. When Reynolds number value is same, the convective heat transfer, pressure drop, air-side Nusselt number and Euler number of single H-type finned tube are bigger than those of double ones. The single H-type finned tube expression is much better than double ones in comprehensive performance and heat transfer.