The mechanical material behavior of mild steels is reversible in the cooling phase of natural fires, which is proven by experimental evidence. For the material behavior of high-strength steels during cooling, no results are yet available. The paper provides the first comprehensive test program on the constitutive material behavior of high-strength steels S690QL and S960QL as well as mild steel S355 J2 + N in the case of natural fires. It is elaborated that the mechanical material behavior of high-strength steels in the cooling phase differs from the behavior in the heating phase and is not reversible due to phase changes of the microstructure. A constitutive material model for structural fire design purposes is developed on the basis of experimental data and the soundness and reliability of the model are proven by a statistical study that systematically evaluates the deviation of the model prediction from the test data.