The objective of this study is to numerically investigate transmission coefficient of submerged trapezoidal breakwater of various configurations subjected to solitary waves. Boussinesq equations of Madsen and Sorensen are applied as governing equations for simulation purposes. Discretization of governing equations is accomplished using Galerkin finite element method and Adams-Bashforth-Moulton predictor-corrector method is considered for time integration. In order to obtain transmission coefficients, two gauges are considered before and after the submerged breakwater to record initial and transmitted wave heights, respectively. To examine the effect of configuration of breakwaters on their transmission coefficients, submergence ratio and crest width ratio are defined and analyzed. Different submergence ratios and various crest width ratios are considered. Computed results indicate how transmission coefficient decreases with the increase over different ranges of crest width ratio, for all values of submergence ratio. Furthermore, keeping crest width and submergence ratios constant, solitary waves with higher initial heights are simulated. Results of simulation indicate that transmission coefficient becomes higher for the same breakwater characteristics. Finally, a parametric study is conducted on the effect of side slopes of breakwaters. It is shown that side slopes have strong effect on wave transmission.