As an important fine machining method, sanding operation is widely used in most engineered materials. In wood sanding, high material removal rate and surface quality are expected. Clarifying the material deformation in the sanding process is the key to improving sanding efficiency. In this study, a single grit scratching method is used to investigate the material removal and surface creation of medium-density fiberboard (MDF) and Korean Pine (Pinus koraiensis Sieb.et Zucc). It is found that there are some differences in the material deformation during scratching Korean Pine and MDF, compared with grinding metals. A mechanism based on the anatomical cavities absorbing effect was proposed to account for the differences. This mechanism helps to explain why tiny, or even no, "pile-up" (like swelling ridges created by the ploughing effect) occurs during scratching Korean Pine, especially in longitudinal direction. MDF as a densified wood composite presented more pile-up and the variation of pile-up ratio was investigated. The porosity and wood grain direction exert great influence on material removal and surface creation in wood sanding. At the rubbing stage, a new method was developed to confirm the elastic spring back effect both in MDF and Korean Pine scratching. The results obtained and the approaches used in this paper could provide insights into the material removal and surface creation research of other wood species and wood composites to finally improve sanding efficiency and surface quality.