The 18th International Conference on Experimental Mechanics 2018
DOI: 10.3390/icem18-05240
|View full text |Cite
|
Sign up to set email alerts
|

Experimental Study on Spallation of Titanium Alloy Plates under Intense Impulse Loading

Abstract: Abstract:The dynamic response and spall characteristics of a double-layer TC4 titanium alloy thin target under intense impulse loading was investigated experimentally using electric gun technique. A velocity-measuring instrument, known as VISAR (velocity interferometer system for any reflector), measured the free surface velocity of targets. Typical characteristic parameters of the velocity were calculated by the obtained data. The deformation/failure modes of the samples were analyzed, and based on stress wav… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2020
2020
2022
2022

Publication Types

Select...
1
1

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(1 citation statement)
references
References 8 publications
0
1
0
Order By: Relevance
“…Although Ti-10V-2Fe-3Al's tensile properties were previously reported [80], the densification process, sintering mechanism, microstructural evolution during sintering, and their correlations with sintered mechanical properties were not given sufficient details. In contrast, the literature on powder-based titanium alloy manufacturing has focused largely on Ti-6Al-4V, with a focus on achieving full densification with respect to different manufacturing conditions [80,81]. Therefore, there is an ultimate need to understand and establish the fundamentals of the cold-compaction-and-sinter PM approach for the fabrication of high strength or specialty solute rich titanium alloys such as Ti-10V-2Fe-3Al.…”
Section: Background/motivationmentioning
confidence: 99%
“…Although Ti-10V-2Fe-3Al's tensile properties were previously reported [80], the densification process, sintering mechanism, microstructural evolution during sintering, and their correlations with sintered mechanical properties were not given sufficient details. In contrast, the literature on powder-based titanium alloy manufacturing has focused largely on Ti-6Al-4V, with a focus on achieving full densification with respect to different manufacturing conditions [80,81]. Therefore, there is an ultimate need to understand and establish the fundamentals of the cold-compaction-and-sinter PM approach for the fabrication of high strength or specialty solute rich titanium alloys such as Ti-10V-2Fe-3Al.…”
Section: Background/motivationmentioning
confidence: 99%