In response to the requirement for population increase, the cross-section area of the urban subway is enlarged, resulting in that one-time excavation technology cannot be directly applied to the excavation of large-section tunnels. Consequently, how to partition the cross-section of the large-section tunnels and optimize the corresponding construction parameters is of great significance. In this paper, we establish a unified planar partition optimization model based on the four parameters of the number of horizontal layers, the number of transverse partitions, the height of the step, and the width of sections. Moreover, using the dynamic programming principle, we can further obtain the optimal excavation sequence and the construction parameters of the large-section tunnels by solving the planar partition optimization model. Combined with the case of an extra-large cross-section tunnel excavation of Chongqing Metro Central Park East Station, the paper optimizes the excavation method of the tunnel with the aim of the maximum construction efficiency and tunnel stability to obtain the optimal excavation sequence, the optimal construction parameters, and the optimal comprehensive evaluation index. The practice has proved that the optimization model based on the dynamic programming principle can effectively solve the problem of large-section tunnel construction. The case analysis can provide an effective reference for similar large-section tunnel projects.