Even though CI engines are more efficient than SI engines due to their ability to operate at a greater compression ratio, a leaner charge, and lower throttle losses, they have higher PM and nitrogen oxide emissions. The induction system modification with fuel port injection is used as a parameter in RCCI engine operations for controlling emission through in-cylinder charge reactivity and combustion phasing. By varying the amount of hydrous bioethanol in the premixed fuel injection ratio, the engine’s performance and emissions are greatly affected. In this study, an experimental investigation of a triple-fuel RCCI engine running on port-injected gasoline-bioethanol blend and direct-injected diesel fuel was conducted. Taguchi’s experimental design method was employed to assess the impact of various independent variables utilizing three set levels and two factors with the L9 orthogonal array. From the findings, the delta value shows the highest average response for each factor. Engine speed has the largest effect on the signal-to-noise ratio (SNR) with the (delta value of: 10.7446, rank = 1), and the delta value of 38.96, rank = 1, has the largest effect on the response of means at engine speeds of 3000 rpm. The premixed fuel ratio of G25BE75 (delta: 87.30, rank = 1) has the largest effect on the standard deviation. The lines are not parallel in all emission and performance cases except for Tb and CO2, which are close to parallel. The best means in engine speed and premixed blended fuel ratio were NOx, CO, HC, and brake power. At 3000 rpm, the speed had the larger main effect plots of SNR. The premixed fuel ratio of G25BE75 had higher main effect plots for means and standard deviations. The residues appear to have been dispersed normally based on a straight line by using a normal probability plot. The data are normally distributed, as demonstrated by the normal probability plot, and the factors had an impact on the response. Conferring to the experiment result, a high engine speed and higher ethanol content in the RCCI premixed fuel are preferred for reducing nitrogen oxides (NOx) and carbon dioxide (CO2), while unburned hydrocarbons (UHCs) and carbon monoxide (CO) showed a slight increase.