Recently, the sandwich structures with thermoplastic faces and metal foam cores have been received much attention in the automobile, aerospace and naval industries. Since the material properties of the polymer-based faces and adhesive films employed in the sandwich structures are sensitive to the temperature and humidity, the knowledge of the environmental effect on the mechanical properties are important to the design and application of such structures. Therefore, the hygrothermal effect on the static and fatigue bending strengths of the sandwich beams with glass-polypropylene faces and aluminum foam cores were experimentally analyzed in the present study. The monotonic and cyclic four-point bending tests were conducted under four environmental conditions, i.e., 25°C/45% RH, 25°C/75% RH, 50°C/45% RH, and 50°C/75% RH, to evaluate the influence of combined temperature and humidity on the strengths against the static and cyclic flexural loads. Experimental results show that the humidity has tiny effect on the static and fatigue strengths when the specimens were tested at fixed temperature. However, the temperature plays an important role in the environmental effect because the monotonic and fatigue strengths of the studied sandwich specimens decrease significantly when the ambient temperature rises from 25 to 50°C. Furthermore, under four considered environmental conditions, two crack systems, the core shear ones and the face/core interfacial ones, were observed both in the monotonic and cyclic tests. The development of interfacial cracks strongly depends on the environmental variables. Accordingly the interfacial cracks play an important role in the static and fatigue strengths of the studied sandwich structures.