Carbon fiber reinforced polymer (CFRP) plates are widely used to retrofit or reinforce steel structures, and the debonding damage between the steel structure and the CFRP plate is a typical failure in strengthening steel structures. This paper proposes a new approach to detecting debonding between a steel beam and a reinforcing CFRP plate by using removable lead zirconate titanate (PZT)-based transducers and active sensing. The removable PZT-based transducers are used to implement the active sensing approach, in which one transducer, as an actuator, is used to generate stress wave, and another transducer, as a sensor, is used to detect the stress wave that propagates across the bonding between the steel beam and the reinforcing CFRP plate. The bonding condition significantly influences the received sensor signal, and a wavelet-packet-based energy index (WPEI) is used to quantify the energy of the received signal to evaluate the severity of debonding between the steel beam and the reinforcing CFRP plate. To validate the proposed approach, experimental studies were performed, and two removable PZT-based transducers were designed and fabricated to detect the debonding between a steel beam and the reinforcing CRFP plate. The experimental results demonstrate the feasibility of the proposed method in detecting the debonding between a steel beam and the reinforcing CFRP plate using removable PZT-based transducers.