e utilization of desert sand for making ceramsite lightweight aggregate concrete is proposed to make full use of local natural resources in the development of a new type of lightweight and load-bearing wall material with good energy conservation, waste utilization, and thermal insulation performances. An orthogonal test was conducted to analyze the effects of the water-binder ratio, sand ratio, desert sand substitution rate, and fly ash content on the slump, apparent density, and tube crushing strength of desert sand ceramsite lightweight aggregate concrete. us, the optimal mixture ratio of the desert sand ceramsite concrete was obtained for the LC20 and LC25 strength grades. Based on two reasonable mixture ratios, the physical and mechanical properties of the desert sand ceramsite concrete were investigated. e results revealed that the water-binder ratio, sand ratio, and desert sand substitution rate were the main influencing factors, and the influence law is essentially consistent with that of ordinary desert sand concrete. Based on the reasonable substitution rate of desert sand, the main physical and mechanical properties of the desert sand ceramsite lightweight aggregate concrete, such as the tube crushing strength, tensile strength, and thermal conductivity, satisfied the requirements of the Chinese code's specifications. In summary, desert sand can replace ordinary sand in ceramsite lightweight aggregate concrete for the production of new lightweight and load-bearing wall materials.