The enhancement of energy systems in industrial zones is attracting the attention of researchers from all over the world. At the same time, optimization and advancement in heat recovery systems are now generating major interest in the energy sector. In this context, the present study suggests a new multiple heat recovery system should be applied to an industrial thermal peeling press machine. The new system consists of multiple sources of energy: the heat excess in the chimney, the exhaust gas of the chimney, and the exhaust gas of the boiler. To proceed with testing the potential of the suggested system, a hydraulic thermal peel press machine in the wood industry undergoes different tests to achieve the best configuration that will enable this machine to reach its operational temperature when heating. Five test configurations are proposed, designed, and applied experimentally on this machine. Many parameters were effective during the experimental tests, such as water flow rate, ambient air temperature, and initial water temperature. It was found that the application of the multiple heat recovery system increases the rate of heating from around 7 °C/min to around 13 °C/min. In terms of energy and economy, the “chimney + boiler only” configuration proved to be the best system to apply during the fall and winter seasons.