The study of the mechanical behavior of composite materials has acquired great importance due to the innumerable number of applications in new technological developments. As a result, many theories and analytical models have been developed with which its mechanical behavior is predicted; these models require knowledge of elastic properties. This work describes a basic theoretical framework, based on linear elasticity theory and classical lamination theory, to generate constitutive models of laminated materials made up of orthotropic layers. Thus, the models of three orthotropic laminated composite materials made up of layers of epoxy resin reinforced with fiberglass were also obtained. Finally, by means of experimental axial load tests, the constants of the orthotropic layers were determined.