Glass fibre-reinforced polymer (GFRP) has been increasingly used as the main reinforcement in concrete structures due to its durability and resistance to corrosion. However, there is a lack of data regarding the bond behaviour of GFRP bars with 180-degree hooked ends used in flexure concrete elements. To investigate the effects of the hooked ends of GFRP bars on the bond strength with concrete, beams reinforced with GFRP bars with straight and hooked-end lap splices at the midspan were modelled using ABAQUS/Standard software. The finite element models were validated using the experimental results of four full-size concrete beams. Two beam specimens had straight-end bars, while the other two had hooked-end bars. Sensitivity analysis was performed to find the proper values for model verification, such as dilation angle and mesh density. According to the outcomes of the parametric study conducted in this research, changing the length of the bar lap splices in the range of 15 to 40 times the bar diameter had a negligible effect on the beam’s overall behaviour. Increasing the number of reinforcing bars from 3 to 5 increased the beam flexural strength by about 33%, whereas increasing the diameter of the bars from 10 to 20 mm doubled the beam strength.