This paper presents an experimental investigation of overall buckling behaviour of carbon fibre reinforced plastic (CFRP) tubes with different off-axis ply orientations. A series of specimens are designed and prepared with stacking sequences [0∘4/±θ∘], with θ corresponding to either 0, 90, 45 or 60. Axial compression tests with effective end-reinforcement and hinge support are performed to investigate the overall buckling behaviour. With respect to the future design and application of CFRP tubes with this type of stacking sequence, column curves for each stacking sequences and all test data are fitted based on Perry-Robertson formula. With respect to the high stress level in the relatively short CFRP tube that facilitates the development of defects, test data present high levels of discreetness. We propose a strategy for engineering safe design in which a reduction factor is added to the original reduction factor based on statistical analysis when the universal slenderness ratio is less than 2.