Objective: Transcranial focused ultrasound (tFUS) is an emerging neuromodulation approach that has been demonstrated in animals but is difficult to translate to humans because of acoustic attenuation and scattering in the skull. Optimal dose delivery requires subject-specific skull porosity estimates which has traditionally been done using CT. We propose a deep learning (DL) estimation of skull porosity from T1-weighted MRI images which removes the need for radiation-inducing CT scans. Approach: We evaluate the impact of different DL approaches, including network architecture, input size and dimensionality, multichannel inputs, data augmentation, and loss functions. We also propose back-propagation in the mask (BIM), a method whereby only voxels inside the skull mask contribute to training. We evaluate the robustness of the best model to input image noise and MRI acquisition parameters and propagate porosity estimation errors in thousands of beam propagation scenarios. Main results: Our best performing model is a cGAN with a ResNet-9 generator with 3D 64x64x64 inputs trained with L1 and L2 losses. The model achieved a mean absolute error of 6.9% in the test set, compared to 9.5% with the pseudo-CT of Izquierdo et al. (38% improvement) and 9.4% with the generic pixel-to-pixel image translation cGAN pix2pix (36% improvement). Acoustic dose distributions in the thalamus were more accurate with our approach than with the pseudo-CT approach of both Burgos et al. and Izquierdo et al, resulting in near-optimal treatment planning and dose estimation at all frequencies compared to CT (reference). Significance: Our DL approach porosity estimates with ~7% error, is robust to input image noise and MRI acquisition parameters (sequence, coils, field strength) and yields near-optimal treatment planning and dose estimates for both central (thalamus) and lateral brain targets (amygdala) in the 200-1000 kHz frequency range.