The integration of clean energy sources (CESs) into modern power systems has been studied using various power converter topologies. The challenges of integrating various CESs are facilitated by the proper design of multi-port power converter (MPPC) architecture. In this study, a brand-new two-stage MPPC is suggested as a solution to the intermittent nature and slow response (SR) of CESs. The suggested system combines a DC\DC and a DC\AC converter and storage unit, and the suggested circuit additionally incorporates a number of CESs (PV\wind\fuel cell (FC)). This article discusses the power management and control technique for an integrated four-port MPPC that links three input ports (PV, wind, and FC), a bidirectional battery port, and an isolated output port. One of the recent optimization techniques (Harris Hawk’s algorithm) is applied to optimize the system’s controller gains. By intelligently combining CESs with complementary characteristics, the adverse effects of intermittency are significantly mitigated, leading to an overall enhancement in system resilience and efficiency. Furthermore, integrating CESs with storage units not only addresses SR challenges but also effectively combats intermittent energy supply. The proposed system exhibits improved dynamic capabilities, allowing it to efficiently distribute excess energy to the load or absorb surplus energy from external sources. This dual functionality not only optimizes system operation but also contributes to a reduction in system size and cost, concurrently enhancing reliability. A comprehensive investigation into operational principles and meticulous design considerations are provided, elucidating the intricate mechanics of the suggested MPPC system. Employing MATLAB/Simulink, the proposed architecture and its control mechanisms undergo rigorous evaluation, affirming the feasibility and efficacy of this innovative system.