To increase the electrical power quality, in the last decades, an intense development in the last decades of high-performance equipment built as advanced power electronics applications, such as the compensators from Switching Power Converter category, has taken place. For all that, Reactive Power Compensators (RPC) based on passive circuit elements, such as Static var Compensators (SVCs), still occupy a wide range of applications in customer and installations of the distribution system installations. The functions of power factor (PF) improvement and load balancing in a three-phase distribution network can be achieved with an unbalanced SVC, known as the Adaptive Balancing Reactive Compensator (ABRC). Presenting first the mathematical model of the initial sizing and the working mechanism of a Balancing Reactive Compensator (BRC) for a three-phase four-wire network, this article develops a compensator resizing algorithm through an iterative change of the initial sizing to transform the compensator into a Balancing Capacitive Compensator (BCC), which keeps the same functions. By using two computational and modeling software tools, a case study on the application of the method was carried out, demonstrating the availability of the sizing problem solution and validating the unbalanced capacitive compensation as an efficient way to PF improving and load balancing in a PCC (Point of Common Coupling).