In this study, we perform accelerated wear tests with porous journal bearings (PJBs) on a lab test rig, providing statistically reliable results under realistic operational conditions. To this end, a custom-made tribometer consisting of 5 mechanically independent but centrally controlled units was used to test five identical bearings in parallel. The test parameters were tuned to promote enough wear under mixed lubrication by increasing the clearance gap and the radial load, while minimizing the bidirectional rotational speed. A wide range of lubricant and material combinations were evaluated, the vast majority of which performed excellently (i.e., negligible wear and low friction). Only one notable combination of a low-density iron bearing paired with a standard PAO-based lubricant failed when operating at low rotational speeds, exhibiting highly unstable frictional behavior and 10–20 times the typical wear in practical applications. An analysis of Stribeck curves, recorded periodically during the wear tests as a diagnostic tool, proved that this particular combination of materials and parameters failed to run in properly, with deteriorating tribological behavior over time. A direct relation between the total wear and the maximum temperature in the tribocontact during testing helped identify this pairing as the only one operating solely under mixed lubrication (high asperity contact), explaining the excessive wear.
Graphical Abstract