The combustion cycle‐to‐cycle variations (CCV) are the typical combustion phenomena in the internal combustion engine, which will not only affect the combustion efficiency, heat‐work conversion process, and emission formation in the cylinder, but also cause the output torque and power fluctuation, resulting in unstable and even misfire. These phenomena are particularly evident in the spark ignition (SI) engine, especially at idle, acceleration, and high exhaust gas recirculation conditions. Consequently, it is quite important to explore the internal relationship and correlation mechanism between the CCV and the affecting factors. This paper comprehensively reviewed the fundamental reasons and mechanisms of CCV of the SI engine. In addition, the characteristic parameters and characterization methods of the CCV, the laws and influencing factors of the CCV, and the numerical simulation methods of the CCV were introduced in detail to quantitatively analyze the performance, combustion, and emissions characteristics of the SI engine. Each research direction is discussed in detail in various sections. The research status of the CCV of the SI engine from the experimental and numerical simulation aspects was also presented and discussed. Lastly, effective methods and strategies were proposed to improve the combustion process and fuel economy, and reduce exhaust emissions of the SI engine for high efficiency and clean combustion.