The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Successful pulsed detonation engine operation requires robust, reliable, repetitive detonation initiation and evolution, up to 100 times per second. Spark-initiated combustion of fuel-oxidizer mixtures appears to be the operational technology. Our research program was designed to model the transient events following time-resolved deposition of thermal energy into a finite volume of reactive mixture. Computational solutions of the reactive Euler equations are used to predict the time history of deflagration to detonation transitions (DDT's). Solutions describe the temporal variation of the spatial distributions of temperature, pressure and fuel concentration.. The presence of shocks, localized reactive hot spots and high speed reaction zones are noted. Solution dependence on the location of the initial power deposition, the amount of power deposition and the activation energy on a one step reaction is investigated. In all cases the DDT process is facilitated by the spontaneous appearance of localized high pressure and temperature ":reaction centers" that are the subsequent sources of acoustic compression waves. The role of compressions and shocks reflected from the boundary into the partially reacted hot gas is described. The quantitative dependences of DDT evolution on the magnitude of thermal power deposition and activation energy are identified.
SUBJECT