ABSTRACT. The generalized (Glen) flow relation for ice, involving the second invariants of the stress deviator and strain-rate tensors, is only expected to hold for isotropic polycrystalline ice. Previous single-stress experiments have shown that for the steady-state flow, which develops at large strains, the tertiary strain rate is greater than the minimum (secondary creep) value by an enhancement factor which is larger for shear than compression. Previous experiments combining shear with compression normal to the shear plane have shown that enhancement of the tertiary octahedral strain rate increases monotonically from compression alone to shear alone. Additional experiments and analyses presented here were conducted to further investigate how the separate tertiary shear and compression strain-rate components are related in combined stress situations. It is found that tertiary compression rates are more strongly influenced by the addition of shear than is given by a Glen-type flow relation, whereas shear is less influenced by additional compression. A scalar function formulation of the flow relation is proposed, which fits the tertiary creep data well and is readily adapted to a generalized form that can be extended to other stress configurations and applied in ice mass modelling.
BACKGROUNDIn natural ice masses the most important and common state of deformation is arguably a combination of approximately bed-parallel shear and vertical compression. For deformational flow with a stationary boundary, a region of simple shear is associated in an essential way with bulk transport of ice in glaciers, ice sheets and ice shelves, and this is generally accompanied by normal deformations associated with increasing velocities along the flow and divergence or convergence transverse to the flow.For a coordinate system with x and y horizontal and z vertical, and corresponding component velocities (u, v, w), simple shear deformation in the x direction can be characterized by du/dz = c where we note that the horizontal planes on which the forces generating shear deformation act do not rotate, while compression normal to these planes is described by dw/dz = k, where c/2 and k are the respective shear and vertical compressive strain rates. The compressive flow may be confined or unconfined, and quite generally the accompanying horizontal normal strain rates are du dx ¼ ð À 1Þk and dv dy ¼ Àk where the factors involving indicate the proportions of the deformations in the horizontal directions, relative to the rate of vertical compression. Note that = 1/2 corresponds to uniaxial compression in the z direction, while = 1 corresponds to longitudinally confined compression in the experiments reported here (Fig. 1).The generalized flow relation for ice involving the second invariants of the stress deviator and strain-rate tensors (Nye, 1953;Glen, 1958) provides a useful formulation for the interactions between the individual stress and strain-rate components for isotropic ice. This relation is not expected to apply for anisotropic i...