Background
The like-Smith (LSM) family is a group of RNA-binding proteins involved in RNA metabolism. However, their involvement in tumors, particularly skin cutaneous melanoma (SKCM), is not fully understood. In this study, we focused on the expression profiles and prognostic values of the LSM family in SKCM.
Methods
Raw data were downloaded from The Cancer Genome Atlas. The expression profile and prognostic value of LSM genes in SKCM were explored using the GEPIA, cBioPortal, and HPA databases. Protein–protein and gene–gene interaction analyses were performed using STRING and GeneMANIA. Enrichment and Cox regression analysis were conducted using R software. The TISIDB database was used to explore the relationship between LSMs and immunomodulators. Receiver operating characteristic curves and nomogram models were constructed to validate prognostic values.
Results
mRNA and protein expression levels of LSM2, LSM4, and LSM12 were significantly elevated in SKCM. The upregulated mRNA expression of LSM2 (p = 0.0013) and LSM4 (p = 0.0043) was significantly correlated with poor overall survival in patients with SKCM, whereas only LSM2 (p = 0.049) overexpression was markedly associated with worse disease-free survival. LSM2 overexpression was an independent risk factor (p = 0.013) and was confirmed to have a high prognostic value in SKCM using the receiver operating characteristic curve (AUC = 0.942) and nomogram models. All LSM genes were identified as genomic mutations, whereas alteration of LSM2 (p = 0.0153) significantly affected the overall survival in patients with SKCM. Significant correlations were observed between LSM family expression, immune cell infiltration, and immunomodulator. Furthermore, function and pathway enrichment analysis showed that the LSM family was mainly RNA binding proteins and involved in RNA splicing and degradation.
Conclusion
Expression profiles and prognostic values of LSM in SKCM were inconsistent. Among the LSM family, only LSM2 may serve as a potential poor prognosticator and immunotherapeutic target of SKCM.