“…Many algorithms have been proposed for IED detection over the last decades (Wilson and Emerson, 2002; Halford, 2009; Halford et al, 2013; da Silva Lourenço et al, 2021), with recent implementations showing good, or better, performance than human experts (Brown et al, 2007; Nonclercq et al, 2012; Scheuer et al, 2017; Reus et al, 2022). Recent examples include the use of adaptive morphological filters (Krishnan et al, 2014), signal envelope distribution modeling (Janca et al, 2015; Peter-Derex et al, 2020), convolutional neural networks (CNN) and deep learning (Lourenço et al, 2020; Constantino et al, 2021; Fukumori et al, 2019; Tjepkema-Cloostermans et al, 2018; Fürbass et al, 2020; Antoniades et al, 2017), long short-term memory (LSTM) neural networks (Medvedev et al, 2019) and generative adversarial networks (GANs) (Geng et al, 2021; Tanaka and Aranha, 2019). Two-step methods have been proposed to reduce the need to manually optimize parameters per different datasets (Liu et al, 2013; Bagheri et al, 2019).…”