2024
DOI: 10.1088/2632-2153/ad62ad
|View full text |Cite
|
Sign up to set email alerts
|

Explainable Gaussian processes: a loss landscape perspective

Maximilian P Niroomand,
Luke Dicks,
Edward O Pyzer-Knapp
et al.

Abstract: Prior beliefs about the latent function to shape inductive biases can be incorporated into a Gaussian Process (GP) via the kernel. However, beyond kernel choices, the decision-making process of GP models remains poorly understood. In this work, we contribute an analysis of the loss landscape for GP models using methods from chemical physics. We demonstrate $\nu$-continuity for Mat'ern kernels and outline aspects of catastrophe theory at critical points in the loss landscape. By directly including $\nu$ in the … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 39 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?