Low-mass X-ray binaries (LMXB) serve as natural laboratories, where the predictions of general relativity can be tested in the strong field regime. The primary object of such sources can be a neutron star (NS) or a black hole (BH), and this object captures material from the secondary object through the inner Lagrange point via a process called Roche lobe overflow. Because of the angular momentum of the infalling matter, an accretion disk is formed, in which viscous effects transport the angular momentum radially outward. In the high/soft state of these sources, the accretion disk can extend all the way to the innermost stable circular orbit (ISCO); therefore, when the primary object is a BH, its X-ray spectrum contains information about the region very close to the event horizon. This paper aims to review the theoretical and observational works related to the X-ray spectroscopy of such sources via the example of GX 339-4, which is one of the most well-known and well-studied LMXBs.