Atmospheric weather and climate models must perform simulations very quickly to be useful. Therefore, modelers have traditionally focused on reducing computations as much as possible. However, in our new era of increasingly compute-capable hardware, data movement is now the prohibiting expense. This study examines the computational benefits of a new algorithmic approach to modeling atmospheric dynamics on scales relevant to weather and climate simulation. Rather than minimizing computations, this new approach considers the larger problem more holistically, including spatial accuracy, temporal accuracy, robustness (i.e., oscillations), on-node efficiency, and internode data transfers together at once. Numerical experiments demonstrate how computations can be strategically increased to simultaneously address each of these constraints while reducing data movement to adapt to modern accelerated hardware. The new algorithm can achieve at times up to 80\% peak floating point throughput in single precision on the Nvidia Tesla V100 GPU, where the traditional approach is shown to only achieve single-digit floating point efficiency. Further, the new algorithm is twice as fast as a standard Runge-Kutta time integrator, and high-order accuracy with Weighted Essentially Non-Oscillatory (WENO) limiting came at less than 30\% additional runtime cost on a GPU, thus increasing the accuracy per degree of freedom.