Ishitsuka et al. [‘Explicit calculation of the mod 4 Galois representation associated with the Fermat quartic’, Int. J. Number Theory16(4) (2020), 881–905] found all points on the Fermat quartic
${F_4\colon x^4+y^4=z^4}$
over quadratic extensions of
${\mathbb {Q}}(\zeta _8)$
, where
$\zeta _8$
is the eighth primitive root of unity
$e^{i\pi /4}$
. Using Mordell’s technique, we give an alternative proof for the result of Ishitsuka et al. and extend it to the rational function field
${\mathbb {Q}}({\zeta _8})(T_1,T_2,\ldots ,T_n)$
.