2015
DOI: 10.1007/s00466-015-1121-x
|View full text |Cite
|
Sign up to set email alerts
|

Explicit mixed strain-displacement finite element for dynamic geometrically non-linear solid mechanics

Abstract: Aquesta és una còpia de la versió author's final draft d'un article publicat a la revista Computational mechanics. Although appealing for their simplicity, low-order finite elements face inherent limitations related to their poor convergence properties. Such difficulties typically manifest as mesh-dependent or excessively stiff behaviour when dealing with complex problems. A recent proposal to address such limitations is the adoption of mixed displacement-strain technologies which were shown to satisfactorily… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
21
0
3

Year Published

2015
2015
2021
2021

Publication Types

Select...
7

Relationship

2
5

Authors

Journals

citations
Cited by 28 publications
(24 citation statements)
references
References 27 publications
0
21
0
3
Order By: Relevance
“…Formulación mixta estabilizada explícita Para definir la ecuación discreta y estabilizada de la ecuación de movimiento (13), ésta tiene que ser discretizada en el tiempo. En la referencia [23] se discuten las ventajas de la formulación mixta explícita en conjunto con un estudio numérico de estabilidad y convergencia. Naturalmente, este método mixto-explícito es condicionalmente estable, pero su precisión es superior a su contraparte irreducible.…”
Section: Discretización Espacial Y Temporalunclassified
“…Formulación mixta estabilizada explícita Para definir la ecuación discreta y estabilizada de la ecuación de movimiento (13), ésta tiene que ser discretizada en el tiempo. En la referencia [23] se discuten las ventajas de la formulación mixta explícita en conjunto con un estudio numérico de estabilidad y convergencia. Naturalmente, este método mixto-explícito es condicionalmente estable, pero su precisión es superior a su contraparte irreducible.…”
Section: Discretización Espacial Y Temporalunclassified
“…Doing this via an explicit time advancing scheme is a well-known procedure for the irreducible formulation. Reference [35] discusses the relative merits of doing this for the mixed formulation, that is, incorporating the solution of the weak form of the geometric equation into the time marching scheme. The resulting explicit mixed method is conditionally stable, but, compared with its irreducible counterpart: (i) it shows enhanced strain and stress accuracy and (ii) it does not require a reduced critical time step.…”
Section: Explicit Stabilized Mixed Formmentioning
confidence: 99%
“…In this case, the load F at the free end of the short cantilever is applied instantly at t = 0, and it remains constant in time. For the integration in time, the time step is selected so that conditional stability is warranted [35]. The OSS method is used for the stabilization of the mixed problem, with algorithmic constants c u = 1.0, c ε = 1.0 and L 0 = 50 mm.…”
Section: Cook's Membrane Compressible and Quasi-incompressible Elastmentioning
confidence: 99%
See 2 more Smart Citations