Heterogenous electrocatalysts based on transition metal sulfides (TMS) are being actively explored in renewable energy research because nanostructured forms support high intrinsic activities for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). In this review article, the authors describe how researchers are working to improve the This article is protected by copyright. All rights reserved. 2 performance of TMS-based materials by manipulating its internal and external nanoarchitectures. A general introduction to the water splitting reaction is initially provided to explain the most important parameters in accessing the catalytic performance of nanomaterials catalysts. Later, the general synthetic methods used to prepare TMS-based materials is explained in order to delve into the various strategies being used to achieve higher electrocatalytic performance in HER. Complementary strategies can be used to increase the OER performance of TMS, resulting in bifunctional water-splitting electrocatalysts for both HER and OER. Finally, the current challenges and future opportunities of TMS materials in the context of water splitting are summarized. The authors aim to provide insights gathered in the process of studying TMS, and describe valuable guidelines for engineering other kinds of nanomaterial catalysts for energy conversion and storage technologies.