2021
DOI: 10.48550/arxiv.2111.08066
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Exploiting Action Impact Regularity and Exogenous State Variables for Offline Reinforcement Learning

Abstract: Offline reinforcement learning-learning a policy from a batch of data-is known to be hard: without making strong assumptions, it is easy to construct counterexamples such that existing algorithms fail. In this work, we instead consider a property of certain real world problems where offline reinforcement learning should be effective: those where actions only have limited impact for a part of the state. We formalize and introduce this Action Impact Regularity (AIR) property. We further propose an algorithm that… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 12 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?