2020
DOI: 10.48550/arxiv.2006.02104
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Exploiting Class Labels to Boost Performance on Embedding-based Text Classification

Abstract: Text classification is one of the most frequent tasks for processing textual data, facilitating among others research from large-scale datasets. Embeddings of different kinds have recently become the de facto standard as features used for text classification. These embeddings have the capacity to capture meanings of words inferred from occurrences in large external collections. While they are built out of external collections, they are unaware of the distributional characteristics of words in the classificatio… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 20 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?