Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
We combine various methods to estimate fracture orientation in a carbonate reservoir located in southwest Venezuela. The methods we apply include the 2-D rotation analysis of 2-D P-S data along three different azimuths, amplitude‐variation‐with‐offset (AVO) of 2-D P-wave data along the same three azimuths, normal‐moveout (NMO) analysis of the same 2-D data, and both 3-D azimuthal AVO and NMO analysis of 3-D P-wave data recorded in the same field. The results of all methods are compared against measures of fracture orientation obtained from Formation microScanner logs recorded at four different locations in the field, regional and local measures of maximum horizontal stress, and the alignment of the major faults that cross the field. P-S data yield fracture orientations that follow the regional trend of the maximum horizontal stress, and are consistent with fracture orientations measured in the wells around the carbonate reservoir. Azimuthal AVO analysis yields a similar regional trend as that obtained from the P-S data, but the resolution is lower. Local variations in fracture orientation derived from 3-D AVO show good correlation with local structural changes. In contrast, due to the influence of a variety of factors, including azimuthal anisotropy and lateral heterogeneity in the overburden, azimuthal NMO analysis over the 3-D P-wave data yields different orientations compared to those obtained by other methods. It is too early to say which particular method is more appropriate and reliable for fracture characterization. The answer will depend on factors that range from local geological conditions to additional costs for acquiring new information.
We combine various methods to estimate fracture orientation in a carbonate reservoir located in southwest Venezuela. The methods we apply include the 2-D rotation analysis of 2-D P-S data along three different azimuths, amplitude‐variation‐with‐offset (AVO) of 2-D P-wave data along the same three azimuths, normal‐moveout (NMO) analysis of the same 2-D data, and both 3-D azimuthal AVO and NMO analysis of 3-D P-wave data recorded in the same field. The results of all methods are compared against measures of fracture orientation obtained from Formation microScanner logs recorded at four different locations in the field, regional and local measures of maximum horizontal stress, and the alignment of the major faults that cross the field. P-S data yield fracture orientations that follow the regional trend of the maximum horizontal stress, and are consistent with fracture orientations measured in the wells around the carbonate reservoir. Azimuthal AVO analysis yields a similar regional trend as that obtained from the P-S data, but the resolution is lower. Local variations in fracture orientation derived from 3-D AVO show good correlation with local structural changes. In contrast, due to the influence of a variety of factors, including azimuthal anisotropy and lateral heterogeneity in the overburden, azimuthal NMO analysis over the 3-D P-wave data yields different orientations compared to those obtained by other methods. It is too early to say which particular method is more appropriate and reliable for fracture characterization. The answer will depend on factors that range from local geological conditions to additional costs for acquiring new information.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.