Abstract. Dopamine receptor 2 (DR2) may be a biomarker for various types of cancer. Ovarian cancer cells overexpress DR2; therefore, blocking DR2 may be a novel treatment strategy for ovarian cancer. Thioridazine, a DR2 blocker, has antineoplastic activity in a variety of cancer cells. In view of the requirement for novel therapeutic agents in ovarian cancer, the present study aimed to determine the potential effects of thioridazine in vitro and in vivo. It was revealed that the DR2 blocker thioridazine induced cell death in a dose-dependent manner in ovarian cancer cells. Thioridazine treatment induced apoptosis and autophagy, which may be attributed to an increased level of reactive oxygen species and associated DNA damage. Additionally, the expression of various proteins increased with oxidative stress, including nuclear factor E2-related factor 2, which is a pivotal transcriptional factor involved in cellular responses to oxidative stress. Heme oxygenase 1, NAPDH quinone dehydrogenase 1 and hypoxia inducible factor-1α and phosphorylated (p)-protein kinase B expression was significantly decreased, and the expression level of p-extracellular signal-related kinases and p-P38 was increased. Using 3-methyl adenine to inhibit autophagy caused the rate of apoptosis to increase. Thioridazine inhibited the growth of SKOV3 xenografts in nude mice. The present study demonstrated that the DR2 blocker thioridazine exhibited anticancer effects in vitro and in vivo, suggesting that thioridazine may be used as a potential drug in ovarian cancer therapy.
IntroductionEpithelial ovarian cancer is the leading cause of mortality among gynecological types of cancer. Surgical debulking combined with chemotherapy is the standard therapeutic strategy. However, the relapse rate is high, primarily due to the development of chemotherapy resistance (1), therefore, novel modalities must be explored.Dopamine receptor (DR) expression may be associated with the development of various types of cancer. Patients with schizophrenia who receive DR antagonists have a reduced incidence of cancer of the rectum, colon, prostate and uterine cervix (2,3). Patients with Parkinson's disease, which functionally similar to disease-induced DR antagonism, also have a lower incidence of cancer. It was hypothesized that DR may be a biomarker for cancer (4). Knockdown/blocking of DR2 inhibited the proliferation of cancer cells, including cancer stem cells (5). This suggested that DR2 may be a treatment target for types of cancer that expresses dopamine receptor 2.Thioridazine is a DR2 antagonist and has been clinically approved to treat schizophrenia and other psychotic disorders (6). Of note, thioridazine exhibits anticancer action in breast cancer, leukemia, hepatoma and cervical carcinoma (5,7-9). Ovarian cancer cells express a number of DRs, with the exception of DR3 (10), suggesting that thioridazine may be used to treat ovarian cancer. In the present study, the effects of thioridazine on ovarian cancer were explored in vitro and in vivo. The findings sug...