Purpose
The aim of continuous learning is to obtain and fine-tune information gradually without removing the already existing information. Many conventional approaches in streaming data classification assume that all arrived new data is completely labeled. To regularize Neural Networks (NNs) by merging side information like user-provided labels or pair-wise constraints, incremental semi-supervised learning models need to be introduced. However, they are hard to implement, specifically in non-stationary environments because of the efficiency and sensitivity of such algorithms to parameters. The periodic update and maintenance of the decision method is the significant challenge in incremental algorithms whenever the new data arrives.
Design/methodology/approach
Hence, this paper plans to develop the meta-learning model for handling continuous or streaming data. Initially, the data pertain to continuous behavior is gathered from diverse benchmark source. Further, the classification of the data is performed by the Recurrent Neural Network (RNN), in which testing weight is adjusted or optimized by the new meta-heuristic algorithm. Here, the weight is updated for reducing the error difference between the target and the measured data when new data is given for testing. The optimized weight updated testing is performed by evaluating the concept-drift and classification accuracy. The new continuous learning by RNN is accomplished by the improved Opposition-based Novel Updating Spotted Hyena Optimization (ONU-SHO). Finally, the experiments with different datasets show that the proposed learning is improved over the conventional models.
Findings
From the analysis, the accuracy of the ONU-SHO based RNN (ONU-SHO-RNN) was 10.1% advanced than Decision Tree (DT), 7.6% advanced than Naive Bayes (NB), 7.4% advanced than k-nearest neighbors (KNN), 2.5% advanced than Support Vector Machine (SVM) 9.3% advanced than NN, and 10.6% advanced than RNN. Hence, it is confirmed that the ONU-SHO algorithm is performing well for acquiring the best data stream classification.
Originality/value
This paper introduces a novel meta-learning model using Opposition-based Novel Updating Spotted Hyena Optimization (ONU-SHO)-based Recurrent Neural Network (RNN) for handling continuous or streaming data. This is the first work utilizes a novel meta-learning model using Opposition-based Novel Updating Spotted Hyena Optimization (ONU-SHO)-based Recurrent Neural Network (RNN) for handling continuous or streaming data.