2018
DOI: 10.1016/j.memsci.2018.05.052
|View full text |Cite
|
Sign up to set email alerts
|

Exploration of anion transport in a composite membrane via experimental and theoretical methods

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
3
0

Year Published

2019
2019
2022
2022

Publication Types

Select...
4

Relationship

1
3

Authors

Journals

citations
Cited by 4 publications
(3 citation statements)
references
References 57 publications
0
3
0
Order By: Relevance
“…The need to develop new high-performance task specific functional polymer-based membranes necessitates the investigation and use of hybrid and composite materials [251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271]. Examples of advanced polymer-based separation media include polymer/inorganic membranes incorporating, for example, zeolites, inorganic particles, or nanoparticles in polymer matrices; carbon nanotube (CNT)/polymer composites; glassy polymerized ionic liquids; polymer/ionic liquid composites; and many other multicomponent combinations of materials in polymeric membranes.…”
Section: New Materials Challenges and Future Outlookmentioning
confidence: 99%
See 1 more Smart Citation
“…The need to develop new high-performance task specific functional polymer-based membranes necessitates the investigation and use of hybrid and composite materials [251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271]. Examples of advanced polymer-based separation media include polymer/inorganic membranes incorporating, for example, zeolites, inorganic particles, or nanoparticles in polymer matrices; carbon nanotube (CNT)/polymer composites; glassy polymerized ionic liquids; polymer/ionic liquid composites; and many other multicomponent combinations of materials in polymeric membranes.…”
Section: New Materials Challenges and Future Outlookmentioning
confidence: 99%
“…Ionic liquid/ionic polyimide composites [276,277] have been studied using molecular simulations as gas separation media and the effect of the anion structure on gas permeability and selectivity has been studied and is to be confirmed by experimental measurements. Moreover, polymer electrolyte membranes have been studied computationally for use as clean water and desalination membranes [278] and the transport of ions in polymer electrolytes has been simulated [258] also in the presence of nanoparticles [170,171,279,280]. Gas barrier properties in several mixed matrix organic-inorganic membranes have been studied computationally such as in MOF/polymer composites [281,282,283], in zeolite/polymer mixed matrix materials [284], in polyhedral oligomeric silsesquioxane/polymer systems [230,285] and in polymer/nanotube composites [286].…”
Section: New Materials Challenges and Future Outlookmentioning
confidence: 99%
“…Researchers have agreed that the ion transport mechanism in ILs is the structural relaxation of ion associations. Nevertheless, there are still disagreements about the ion transport mechanism in PILGCs and IL-PILGC blends. Some researchers found that ion transport in PILGCs is associated with the structural dynamics of PILGCs, whereas other researchers , demonstrated that ion conductivities and structural dynamics in PILGCs are unrelated. Such disagreements must be clarified.…”
Section: Introductionmentioning
confidence: 99%