Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Crop diseases pose a significant threat to global food security, with both economic and environmental consequences. Early and accurate detection is essential for timely intervention and sustainable farming. This paper presents a review of machine learning (ML) and deep learning (DL) techniques for crop disease diagnosis, focusing on Support Vector Machines (SVMs), Random Forest (RF), k-Nearest Neighbors (KNNs), and deep models like VGG16, ResNet50, and DenseNet121. The review method includes an in-depth analysis of algorithm performance using key metrics such as accuracy, precision, recall, and F1 score across various datasets. We also highlight the data imbalances in commonly used datasets, particularly PlantVillage, and discuss the challenges posed by these imbalances. The research highlights critical insights regarding ML and DL models in crop disease detection. A primary challenge identified is the imbalance in the PlantVillage dataset, with a high number of healthy images and a strong bias toward certain disease categories like fungi, leaving other categories like mites and molds underrepresented. This imbalance complicates model generalization, indicating a need for preprocessing steps to enhance performance. This study also shows that combining Vision Transformers (ViTs) with Green Chromatic Coordinates and hybridizing these with SVM achieves high classification accuracy, emphasizing the value of advanced feature extraction techniques in improving model efficacy. In terms of comparative performance, DL architectures like ResNet50, VGG16, and convolutional neural network demonstrated robust accuracy (95–99%) across diverse datasets, underscoring their effectiveness in managing complex image data. Additionally, traditional ML models exhibited varied strengths; for instance, SVM performed better on balanced datasets, while RF excelled with imbalanced data. Preprocessing methods like K-means clustering, Fuzzy C-Means, and PCA, along with ensemble approaches, further improved model accuracy. Lastly, the study underscores that high-quality, well-labeled datasets, stakeholder involvement, and comprehensive evaluation metrics such as F1 score and precision are crucial for optimizing ML and DL models, making them more effective for real-world applications in sustainable agriculture.
Crop diseases pose a significant threat to global food security, with both economic and environmental consequences. Early and accurate detection is essential for timely intervention and sustainable farming. This paper presents a review of machine learning (ML) and deep learning (DL) techniques for crop disease diagnosis, focusing on Support Vector Machines (SVMs), Random Forest (RF), k-Nearest Neighbors (KNNs), and deep models like VGG16, ResNet50, and DenseNet121. The review method includes an in-depth analysis of algorithm performance using key metrics such as accuracy, precision, recall, and F1 score across various datasets. We also highlight the data imbalances in commonly used datasets, particularly PlantVillage, and discuss the challenges posed by these imbalances. The research highlights critical insights regarding ML and DL models in crop disease detection. A primary challenge identified is the imbalance in the PlantVillage dataset, with a high number of healthy images and a strong bias toward certain disease categories like fungi, leaving other categories like mites and molds underrepresented. This imbalance complicates model generalization, indicating a need for preprocessing steps to enhance performance. This study also shows that combining Vision Transformers (ViTs) with Green Chromatic Coordinates and hybridizing these with SVM achieves high classification accuracy, emphasizing the value of advanced feature extraction techniques in improving model efficacy. In terms of comparative performance, DL architectures like ResNet50, VGG16, and convolutional neural network demonstrated robust accuracy (95–99%) across diverse datasets, underscoring their effectiveness in managing complex image data. Additionally, traditional ML models exhibited varied strengths; for instance, SVM performed better on balanced datasets, while RF excelled with imbalanced data. Preprocessing methods like K-means clustering, Fuzzy C-Means, and PCA, along with ensemble approaches, further improved model accuracy. Lastly, the study underscores that high-quality, well-labeled datasets, stakeholder involvement, and comprehensive evaluation metrics such as F1 score and precision are crucial for optimizing ML and DL models, making them more effective for real-world applications in sustainable agriculture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.