Exploration of materials fatigue influence factors using interpretable machine learning
Christian Frie,
Ali Riza Durmaz,
Chris Eberl
Abstract:Data‐driven fatigue strength predictions are gaining popularity. Nevertheless, many machine learning models lack trustworthiness due to their limited decision‐making transparency which often hinders their practical application. In this investigation, we assess the expressiveness of the model‐agnostic explainable AI method known as SHapley Additive exPlanations (SHAP) for data‐driven fatigue strength prediction. Our study demonstrates that the SHAP feature sensitivity analysis underpins known physical relations… Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.