Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
This work addressed the directed synthesis of a new phase Rb5Li1/3Zr5/3(MoO4)6, along with the determination of its crystallographic, thermal and electrophysical properties. The directed synthesis of the Rb5Li1/3Zr5/3(MoO4)6 phase was carried out using the solid-state reaction in the temperature range of 350–470 °C. According to differential scanning calorimetry, the synthesised compound Rb5Li1/3Zr5/3(MoO4)6, crystallised in trigonal form (space group R3c, Z = 6), undergoes a diffused first-order phase transition. The structure of triple molybdate Rb5Li1/3Zr5/3(MoO4)6 comprises MoO4 tetrahedra and octahedrally coordinated MO6-polyhedra. This structure is characterised by a statistical distribution of lithium and zirconium atoms in the M position (M1 = 0.790 Zr + 0.210 Li, M2 = 0.877 Zr + 0.123 Li). Rb atoms are located in the large voids of the tetrahedronoctahedral framework. The electrophysical properties of triple molybdate Rb5Li1/3Zr5/3(MoO4)6 having a scaffold structure favourable for ion transport, were studied. The correlation between dielectric and thermal characteristics in the high-temperature region near the phase transition was revealed. The temperature and frequency dependences of electrical conductivity were measured at 473–873 K in heating and cooling modes in the frequency range of 1–10 kHz. The compound exhibited a high thermally activated conductivity, reaching 1.48·10-2 Cm K/cm with activation energy in the range of 0.6–0.8 eV at a temperature of 480 °C. Well-shaped semicircles in the low-frequency region and unresolved arcs in the high-frequency region changing with increasing temperature were observed in the impedance spectra of ceramic Rb5Li1/3Zr5/3(MoO4)6 sample at various temperatures. The evolution of the imaginary part (Z'') as a function of the real part (Z') of the complex impedance resembled that of the complex impedance for compounds having ionic conductivity.
This work addressed the directed synthesis of a new phase Rb5Li1/3Zr5/3(MoO4)6, along with the determination of its crystallographic, thermal and electrophysical properties. The directed synthesis of the Rb5Li1/3Zr5/3(MoO4)6 phase was carried out using the solid-state reaction in the temperature range of 350–470 °C. According to differential scanning calorimetry, the synthesised compound Rb5Li1/3Zr5/3(MoO4)6, crystallised in trigonal form (space group R3c, Z = 6), undergoes a diffused first-order phase transition. The structure of triple molybdate Rb5Li1/3Zr5/3(MoO4)6 comprises MoO4 tetrahedra and octahedrally coordinated MO6-polyhedra. This structure is characterised by a statistical distribution of lithium and zirconium atoms in the M position (M1 = 0.790 Zr + 0.210 Li, M2 = 0.877 Zr + 0.123 Li). Rb atoms are located in the large voids of the tetrahedronoctahedral framework. The electrophysical properties of triple molybdate Rb5Li1/3Zr5/3(MoO4)6 having a scaffold structure favourable for ion transport, were studied. The correlation between dielectric and thermal characteristics in the high-temperature region near the phase transition was revealed. The temperature and frequency dependences of electrical conductivity were measured at 473–873 K in heating and cooling modes in the frequency range of 1–10 kHz. The compound exhibited a high thermally activated conductivity, reaching 1.48·10-2 Cm K/cm with activation energy in the range of 0.6–0.8 eV at a temperature of 480 °C. Well-shaped semicircles in the low-frequency region and unresolved arcs in the high-frequency region changing with increasing temperature were observed in the impedance spectra of ceramic Rb5Li1/3Zr5/3(MoO4)6 sample at various temperatures. The evolution of the imaginary part (Z'') as a function of the real part (Z') of the complex impedance resembled that of the complex impedance for compounds having ionic conductivity.
The work is aimed at the directed synthesis of new phases of tungstates containing mono-, tri-, and tetravalent metals, as well as the determination of their crystallographic, thermal, and electrophysical properties. The study used the method of solid-phase synthesis to obtain tungstate phases with composition MRA0.5(WO4)3 (M – singly, R – triply-, and A – tetra-charged elements) within the temperature range of 400–750 °С. Their crystallographic and thermal characteristics were determined. The synthesized ternary tungstates crystallizing in a hexagonal system were studied using differential scanning calorimetry. The technique revealed an increase in the melting temperatures of compounds with increasing ionic radius of the trivalent cation in the series CsRTi0.5(WO4)3 (R = Al, Cr, Ga, Fe, In). The same correlation is observed when switching from rubidium to cesium derivatives. The thermal stability of ternary titanium and hafnium tungstates was compared. The melting temperatures of RbRTi0.5(WO4)3 are about 20 °С higher than those of their hafnium counterparts. The dielectric characteristics of CsRTi0.5(WO4)3 (R = Fe, Cr) belonging to the ternary tungstate family were analyzed via impedance spectroscopy. The temperature and frequency dependences of the conductivity of ternary tungstates at different frequencies (1 Hz – 1 mHz), measured in heating and cooling modes, are characterized by a slight temperature hysteresis, reaching 10-2–10-3 S/cm in the high-temperature region at activation energy values of 0.4–0.5 eV. The impedance frequency spectra measured within the range of 1 Hz – 1 mHz at different temperatures confirm the ion-conducting properties of the sample, which allows the obtained phases to be considered promising solid electrolytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.