2022
DOI: 10.30630/joiv.6.3.898
|View full text |Cite
|
Sign up to set email alerts
|

Exploration of The Impact of Kernel Size for YOLOv5-based Object Detection on Quadcopter

Abstract: Drones or quadcopters have been widely used in various fields based on deep learning, especially object detection. However, drone vision characteristics such as occlusion and small objects are still being explored for performance in terms of accuracy and speed detection. The YOLO architecture is very commonly used for cases requiring high-speed detection. To overcome the limitations of drone vision, in this paper, we explore the size of the YOLOv5s backbone kernel in the shallowest convolutional layer to achie… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 32 publications
0
0
0
Order By: Relevance