Structural fracture distribution is essential in oil and gas transportation and development in passive continental margin basins. In this paper, taking as an example the clastic reservoirs in the A-Basin, a passive continental margin in northeastern South America, the paleotectonic stress field of the Late Cretaceous Maastrichtian formation in Basin A was numerically simulated by finite element technique through the integrated interpretation of seismic total data, logging data and core data, and the distribution of tectonic fractures was later predicted based on rock fracture criterion. The results of the study show that: (1) The distribution of tectonic stress and fractures during the Late Cretaceous Maastrichtian formation of Basin A is affected by the fracture zone, mechanical properties of rocks and tectonic stress, regions with extensive fracture development are susceptible to stress concentrations, resulting in significant stress gradients. (2) The development of structural fractures in the study area was predicted using the Griffiths criterion, and the tensile rupture coefficient T was introduced to quantitatively characterise the intensity of fracture development, with larger values reflecting a higher degree of fracture development. The well-developed and relatively well-developed fractures are mainly located in the fracture zones and the interior of submarine fans. (3) Fracture zones and sedimentary phases mainly control structural fractures in Basin A; within 5 km outside the fracture zones, the development of fractures is controlled by the fracture zones, beyond which the regional tectonic stress field controls them; inside the sedimentary fan, the development of fractures is controlled by the sedimentary subphase, which decreases in the order of the upper fan, the middle fan, and the lower fan; inside the subphase, they are controlled by the regional tectonic stress field, and the fractures show the increasing trend in the direction of NW-NE.