“…A close look at the categorization under CNN shows that encoder+decoder is the most diverse, covering all five research tasks, while decoder covers two tasks (i.e., data [2](U-Net, deformable CNN), [47] [11](CNN vs. ResNet vs. U-Net), [15](U-Net), [27] (GAN) [49] [50](GAN), [55] (GAN) [35], [40](nested encoder+decoder), [45], [46], [53] [76](ESPCN), [106] (GAN), [126] [54] (GAN), [56] (GAN), [70] (GAN) [159] (FRVSR-Net), [161](EnhanceNet) [81](symmetric FCN), [84](AE), [103](residual AE) [162] (multi-pass GAN) [116](U-Net vs. U-Net+ResNet vs. DenseNet) [167] (ESRGAN, WGAN) [117](AE), [154](multi-stream CNN) [168] (GAN), [182] [158](U-Net, V-Net), [163], [164] MLP [57], [183](FCCNN) - [84], [109], [160] RNN [164](stacked LSTM) [163](LSTM) -GNN [52](GCN), [64](GCN) [131](GCN) -CNN+MLP [24], [26](Siamese) [63] [12] (GAN), [48](AE) [31], [62], [85] [97](Geo-CNN)…”