Abstract:In this paper, we explore the robustness of the Multi-Task Deep Neural Networks (MT-DNN) against non-targeted adversarial attacks across Natural Language Understanding (NLU) tasks as well as some possible ways to defend against them. Liu et al., have shown that the Multi-Task Deep Neural Network [5], due to the regularization effect produced when training as a result of it's cross task data, is more robust than a vanilla BERT model trained only on one task (1.1%-1.5% absolute difference). We further show that … Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.